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ABSTRACT

Linear search algorithms are developed for use when minimizing
logarithmic barrier fun:tions, whose one-dimensional Lalavior is in

general modeled poorly by the low~-order polynomial approximations

of standard linear search procedures. The new methods are based on

special epproximating functions with a logarithmic singularity, asnd
are designed to utilize the same information as procedures based on
quadratic or cubic polynomials. Although the parameters of the special

approximating functions depend nonlinearly on the available data, the

determination of the parameters requires little additional work in
comparigon with polynomial fits. Use of the special approximating
functions has led to a significant Iimprovement in efficiency when
minimizing logarithmic barrier functions, where efficiency is measured
by the number of function (or function and gradient) evaluations

required for termination of each linear search.
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1. Introduction

An essential part of many algorithms for minimizing a function
of several variables is the determination of a positive step to be
taken from an initial polnt along a given search direction. At the
new point, the values of the function and possibly its derivatives

are required to satisfy some apecified conditions with respect to

these quantities at the original point. For example, in theoretical

presentatlions of such algorithms, it is often stated that the step

taken should minimize the function along the direction of search;
; the desired step in this case will be denoted by o*, and is defined

by:

F(x + otp) = min F(x + ap),
o

B R R S

where x is the initlal point, p 1s the search direction, and F(x)

ig the function to be minimized.

DA

5 However, 1n most applications the conditlons that define an

acceptable step are less stringent, and will be satisfied by an approx-

GEa i pail

imation to o* (see Osborne, 1972; Gill and Murray, 1974). An efficient

method for obtaining such a step can be based on an iterative procediure
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to determine %, by generating iterates only until the required con-
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ditions hold, Thus, whatever the criteria to be satisfied, the
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underlying iterative process remains the same; what varies is the
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The discussion to follow will be concerned only with the procedure

by which successive estimates of the desired step length are generated,

and not with the terminatlon criteria. The terms "linear search"

and "one-dimensional minimization" will be used to denote the iterative
procedure coumon to all such algorithms, and do not imply that a

close approximation to «&* 1s to be obtained.

The linear search procedure is of crucial importance to the
success of most computational algorithms for unconstrained minimization;
cousequently, there has been considerable work on devising efficient
and reliable methods for one-dimensional minimization, and on the
careful implementation of such methods as computer routines (see Brent,
1973; Gill and Murray, 1974). These general-purpose linear search
algorithms combine succesgive low-order polynomiasl interpolation or
extrapolation with safeguards to ensure convergence and numerical

gtability. The performance of a linear search procedure 1g normelly

i measured in terms of the number of function, or function and gradieni.

evaluations required to locate a point that satisfies the prescribed
termination criteria. Whzen executing a linear seamh with respect

3 to a particular nonlinear function, the efficiency of the algorithm
: will thus depend on the adequacy of the polynomial approximation to

the given function. For minimizing generel functions with no g priori

information about the nonlinearities, linear search procedures based

on polynomial approximetion may be the most efficient, although

inevitably the non-polynomial-like behavior of some functions will
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necessitate a large anumber of successive polynomial fits (and, hence,
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evaluations of the function). ;
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This paper will be concerned with the design of linear search
algorithms for a particular class of nonlinear functions--logarithmlc

barrier functions. A linear search with respect to these functions

% is required in several slgorithms for constrained minimizatlon, and f
g yet their behavior is in pgeneral modeled poorly by low-orv.:r polynomlalg. .j
| 2. The logarithmic Barrier Iunetion ;
Barrier function methods were f'irst Iintroduced as a technique g
for transforming a nonlinearly constrained minimization problem into ,;
% a sequence of unconsgtrained problems, where feasibility with respect ﬁ
% to the problem ccnstraints is maintained throughout (a full description i
! is given in Fiacco and MeCormick, 1968). The only barrier function i
t0 be congidered here ig the logarithmic barrier funcition, defined ‘E
as followa: corresponding.to 1he nonlinearly constrained minimization fi
; problem '5
w A
minimize F(x), x € B §

g (2.1)

TSRS

subject to ci(x) >0, 1 =1, 2, coey, 8,

wvhere TF(x) and {Ci(x)] are prescribed nonlinear funciions, the

lararithmic barrier function is given hy:

2
(E‘.;?) B(x, ]v) = P'(x) - I 2 En(ci(x)))
t-1
.?| where the positive ncalar r is termed the "bnrrler psremeter,"
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Interest in barrier function methods has waned in recent
years, due to the development of more promising algorithms, many
of which are based on extensions to tile quadratic penalty function
(see Fletcher, 1974; for a discussion of penalty functicms, see Fiacco
and McCormick, 1968). However, nearly all the more recent algorithms
are non-feasible polnt methods, and hence are unsatisfactory for
problems in which the objective and/or constraint functioas are ill-
defined or undefined outside the feasible region. In addition, non-
feasible point methods mey have other disadvantages. For example,
the transformations employed may introduce spurious non-feasible
solutions; furthermore, if such an algorithm is terminated prematurely,
it often fails to provide a useable solution.

Many of the algorithmic developments based on the quadratic
penalty function can be mirrored by utilizing the logarithmic barrier
function. Two such suggestions have been made by Osborne (1972) and
Murray and Wright (1976). For feasible point algorithms, the logari-
thmic burrier function, which has the virtue of maintaining feasibility,
can often serve as a convenient "merit function" for a linear search,
regardlegs of how the search direction is obtained. Therefore, it
is worthwhile to consider how to explolt the special properties of
the logarithmic barrier function in the design of a linear search
algorithm.

The inadequacy of linear search procedures based on polynomial
fits for minimizing barrier functions has been discussed by Fletcher

and McCann (1969), Murray (1969), Lasdon et al., (1973), end Ryen (197h).

RPEORIE NN T SRPI-SENG SE PPN RS T L S




[ T

7 AT R i AT A s e

N

/T BT
e

v e,
A

o

A TS

R Rt gD
[ .

RS v S

The Jdefining charecteristic of a barrier fonction [0 cinraiarity
unt the boundary of the feasiuie repinn; alnce palvnomizla provids
a4 poor approximation wo a function with a singuls.ity, the veneral
approuch has been to ~ugpest sliernative approximat g functicns
with the zame kiind of singularity ss the barrier functios  The

minimum of tha gpecial approvimating functilon cen 'w taken as an

“estimate of the minimum of the burrier function, to be used within

the linear search procedure ln exactly the same way as the eatimated
minima of polynomiul approximations. However, it may not be possgible
to determine explicitly the coefficients and/or the minimum of the
new approximating function, in contrast to these calculations for

polynomials.

3. ittlr Special Functions
5.1. Discussion

The special functions wu ne considered are designed to contain
a single logerithmic singularity. This restriction to a particular
barrier function contrasts with the general approach taken by Lasdon
et al. (197%), where a special function is developed by the applica-
tion of the form of the barrier function to linearized approxlmations
to the objective fnetion and the conztraints. The approach taken
hare allows a much simpler solution to the problem, where the known
form of the singularity is directly exploited. A single function is
used to approximate the behavior of the barrier function along the
search direction, and it is not necessary to meke separate approxima-
tions to the objective function and the constraint functions.
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| ‘ The logarithzic barrier funetion can v, synlistesd only al
feasible points, sand s 1ndelfined buywnd <he fir- sinmilacity
along & particular direction. Therefsre, anily Teszible pointg ore
considered in fitting the approximsting Cinctions, cinte the ia’a
to be used will be values of the barrier funct’ocn and f¢n cradient,

It will be gscumed thst we seek an epproximaricn to the

winimum along the search direction of

Ll B

Blx, r) + F - r

res
[ ¢
[

where the barrier parsmeter, r, is known andi fixed throwhout the

e

linear search. The gspecial functions to be considered are the follow-
ing, where the parameter 6 repr.gents the one-dimensional variation
along the search direction:

(a) & ilnear function plus a loperithmic singularity, of the form:
: r,(6) =&+fo-r in(d - 8);

(b) a quadratic function plus a logerithmic singulerity, of the form:

fQ(G) -8 + DO + 862 -r¢n@@ - 9),
;’ Thses formulations attribute all the singular behavior to

one location (6 =d); in fact, the singularity displayed by a

’ barrier function depends in general upon the first constrainrt zero
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encountered along & piven direction, and <eroc that muy occur beyond

the first sre irrelevant., This behsvior hecomeg especially marked for
smell values of the barrler psrameter, when the constraini funetions
vounded away from zero have almost no influence on the barrier
function, and the nearest constraint has influence only very close

to its zero aslong the given direction. A smooth function with a
suitable damped singulerity should, therefore, be an excellent model

of a barrier function close to the boundary of the feasible region.

%e2. Linear Funetion Plus Iogerithmic Singularity
‘ The special function to be fitted is of the form:

fp =8+ 60 - r 4n(d - 6).

NS TR S g TP " 4 =

ol

Differentiating fL with respect to © Agives:

b

f

f'=8+4—"‘, é

; L .0 ’

- 5

1 and 'é

St &

i

f": r %

cd L @-e)?°
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o Since the barrier function is decreasing at 6 = 0, this same condii-

tion will be required of fL’ so that

£1(0) = b + § < o.
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The singularity, 4, ic sssumed to ‘e u positive step alow:

Bl

-
the eurrent direction, and, therefore, n - 0.

A stationary point of fL occurs st “* such that

£7(6%) = G,

or

|
!

so that

bl

e

The expression for 6% {3 equal to the value of f;(O) times
(8/8), and since (3/%) and fi(ﬁ) sre negative, &* oust be

positive. f{ is everywhere positive, so that the ststilonary poin*

must be a minimum of .
In order to specify the function fIf three independent pleces
of information are required about the behavior of the function to
be fitted along the gearch direction; fL wlll therefore be used in
circumstances where a parabolic fit would normally be carried out to
‘ minimize a general function. Figure 1 illustrates a barrier function

and its approximations by the function . and a parabola, hth using

L
the seme data. It is clear that the special function gives a more

R

accurate prediction than the parabole of the minimum of the barrier

function.
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The speclial functlon £, will be fitlted with the same sets

4

of data used by a typical paraholic line search, namely: (1) one
function value, the corresponding projected gradient, and a second
function value; (2) three functvicn velues. In the followin' discus-
sion, fi will denute the function value at ei’ and i is the

corresponding value of the projected gradient.

Cage 1. 1Two function velyeg, one gradient

The three unknown parameters of f

~

L= 3, 8, and d -- must ove

solved for in terms of the known values, Assuming thst b2 > 91,

the equations specifying fL are:

(R) f,=8+b, -r in(d - 6,)
o B

1
(c) r, =a+ b62 -r i@ - 92).

There is no loss of generality in assuming that 91 = 0, so

that from (A) and (B) we obtain:

a = fl + r 4n(d,
and
~ _r
b8 -}
10
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Substitutins these values into (C) yields:
f = f

5 1t 2n(d) + (gl . ‘5‘)8,., - rtn(d - 6?),

or, sfter re-arrsncing:

(3 -eN 8,
(3.1) Ln —3_-)+ 3‘- ;—r—(ezgl - (12 - (‘1)).

If ¢ va'lue 8, the locatlon of the singulsrity, can be found

which satisfles (3.1), the valics a, 3, and ©6* can then be computed

from the previously derived relatlonsilps.

Consider (3.1) as a nonlinear equation in terms of the functlon

d - 8 (2]
¢, (4) ﬁn(-T-a) +—d£ + Kk

1’

where

~
The pronlem to e solved then “ecomesg tha! of finding a solution d

Lo satisfly

ol(d) = 0.

11
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Beceuse O, is feasible, the valus of the sirgularity, 8,

mst lie in the interval (92, ), The function dl(d) has the

following propertles:

¢1—b-w as d-t92+;
¢1-bk1 as 4 = w
¢i>0 for all finite 4;
d:i—#:n as d-092+;
¢i-oo as d = » ;

snd
¢:'l' <0 for all finite 4.

These relations imply that there is a unique zero of ®1 in (92) =),

provided thst k., >0, i.e., (€2 - t‘l)/e2 > g, This requirement

1

means that the function value at 92

would have predicted, {.e., £, must lie in

approximation at 6 >

1
the shaded region of Figure 2.

Although the numerical solution of the equation ol(d) =0

would yield the desired value 3, %, is an ill-behaved function,

1
unsuitable for the usual zero-finding techniques such as Newton's
method. Figure 3 illustrates the behavior of Ql'

12
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must be larger than the linear
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Figure 2
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An attempt to apply Newton's method in Region I would cause

% very slow convergence to the zero, although all estimates would
P undershoot and hence could not diverge. In Region II, Nawton's
' % method might easily yield an estimate to the left of 92, and safe-
‘ guards would need to be incorporated to prevent divergence.
To avoid these difficulties, the problem of solving Ol(d) =0
cen be transformed into an equivalent problem that is easy to solve.
If we define a new variable y = 92/d, 80 thet 0 <y < 1 for the

admissible range of 4, the equatinon ol(d) = 0 can be written in

terms of y as

n(l - y) = =y - k) .

i

Taking exponentials of both sides gives the equation

T TN

-
-ye 1,

l-y=e

SRR
e et L

and the value ¢ which satisfies this equation is a zero of a new

L,

function,

| b abt -

* —
Wl(y) =1l-y-eVe 1,

T TR T AT R
a_
| P

Differentiating with respect to y gives:
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and thus ‘Yi and ‘Y'l' are negative tor zll y In the interval
(0, 1), ir kl > 0. Furthermore,
-k,
16

y‘1(]-) - -e- e < O;

so that 'i’l has & unique zer> § in (0, 1) it kl > 0. Figures L
and 5 {llustrate the behavior of Yl for two values of k). Even

for k., small, when the nonlinear portion of ‘1’1 is more significant,

1

*1 {s very close t» linesr in (0, 1).

Because Yl is well-behaved, Newton'r method will converge

to f; very rapidly. However, even further sdvantage can be taken

of the form of ‘Yl by noting that ¥ satisfies the relation

(3.2) k) = -y - in(1 - 9.

LA ke b g ot

Since the right-hsnd side of (3.2) depends only on the paramet,r

¥, and is independent of the problem data, the values of the function

- e | i M

cn the right-hand side can be tabulated for a set of y in (0, 1j.

For a psrticular value of lr.l, table lookup could then be used to
determine a highly accurate estimate of y. With a sufficiently
large table, no {terst’on would be necessary to locate the solution

to any desired accuracy; but since Newton's method converres rapidly,

M N o h st g1e L,
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a small table plus a single iteration will locate § (and 3) to
the required accuracy (e.g., seven values are sufficient for an

accurecy of 10-5) .

, .w.««:ﬂnmnmw=m o L

Acsuming that 95 > 02 > 91, the three equatlions specifying

the parameters ;T, f;, and 3 of f‘L are:
I'ad P o A- - T 2 - 3
(A) £, 78 409, -1 In(d 6,)
(B) roosa+86 - rin(d-0)
2 ps e
) Fg -9 * h»‘.’fj -rin(d - 95). g

There le no losy of gererality in assuming that 91 = Q.

. ¢ . { e L) ~ [3
Using equetion- (A0 and (8]« eliminate a, we obtain:

f. -, q - 9

g, L ; v

—'—‘—""“ 2 b oo 8’\ n ———-='A
‘ : d

R hacead s - el A, ol - il ) i Wit st el

arcd, efatiarly, cimgr o A) Aanl (1) cives:

£ o FR)
- {:-L‘..M__i.
4, 8, _3

19
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These two equations can then be menipulated to eliminate g, yielding:

d-0 g £, -f, £ «f
(3.3) %—zn(—g——i)-%—zn(—-g—@-)+%(5e .2 1)=o,

3 2 3 2

a relationship which must be sstisfied by &, the location of the .

singularity.
a Consider (3.3) as a nonlinear equation in terms of the function
} q -6 q =0
d 0(d)=!'—'£ —J-LG——a +k,,
5 2 e d e d 2
" 3 : 2
8 where
"("
] k -l(jefl.- ,-\efl).
" e r 3 2
The problem to be solved then becomes thaet of finding s solution 3

: ! to satisfy @,(d) = O.

&;: Becsus? 6, and 93 are feasible, the value of 4 mus% 1lie

in the inter.al (93, w), The function ¢, has the following proper- f

2 ~
ties: %
4
- 9 H 5‘
02-* % a8 d - 3 + 3
02-4,k2 ag d=—w® ; )
Oé >0 for all finite d; :
] [} R
02 - as d - 3 + 3 !
%ao a8 d == ; i
and |
93 <0 for all finite d. i
20
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These reletions imply that there is a unique zero of ¢

2
in (93, =) if k, > 0. This requirement hes a similer interpretation

T ‘?’mﬂ?v,»

[ A

to Case 1, i.e., the configuration of fl’ f2, and 'f5 must be as

shown in Figure 6, so thet the line joining t‘5 and £, must lie

-

above the line joining f2 and f,.

Because of its highly nonlinear behavior, ®2 is unsuited for

application of the usual zero-finding techniques. The behavior of

i
¢, 1s illustrated in Figure 7. i
To transform the probtlem of finding d to solve dze(d) =0 é
into a computationally manageable form, we introduce the variables j
d = d4/6,, so that d > 1, and 53 = 63/92, with 95 > 1; in essence, we g
consider 92 to be unity and scale 95 and d accordingly. If we §
multiply the equation ¢, (@) =0 by 95 and substitute the variables
d and 6., we obtain:
T
-~ = e - - . ]

(3.4) m(l - 3 5 il - § - k0,
]
- d
Let the variable y = 93/d, so that 0 <y <1 for all admis- i
gible d. TekinZ exponentials of both sides of (3.4) gives:
%
6, k.6 i
-9 -(1-%)2e23,
3

snd the value § which satisfies this relation is a zero of the

function:

¥
- A
‘4‘2(3!) --1-Y-B(l ,’) ’
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where

- -k 0
>1, and B =e 23

(so that 0 < B <1l for k2>0).

Differentiating Ya with respect to y, we obtain

a3
-
[}
1
-
+
™
———
[

Ye has the following properties:

‘1'2(0) =1-p>0

} 1\’
¥,(1) = -5(1-7) <0
Yé(o) =-1+B8<0

7=l
¥1(1) = -1 + 5(1 - l) <0,
and

"
Yz <0

2k

1

(y = 0 corresponds to d=— ®);

(y = 1 corresponds to d- 93 +);

for y in the interval (0, 1).
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b These conditions imply that Yg has a unique zero in (0, 1),

which could be located by Newton's method. Ye is a well-behaved

funetion, in contrast to ¢,. The nonlinearity in ¥_ results from
-

2
the expression (1 - y/7)7, where y > 1, and is the quotient 95/92

from the original protlem. The value of 7y has been monitored during
several runs wllh particular barrier functions; it never exceeded

2.0, and was usually in the range (1.01, 1.5). Even if 7y were

1 ro R R r tn(a -8).

f, large, the expressicn (1 - y/y)7 approaches e as 7 approaches
Eﬁ w, and hence the funstion Y, tekes on the form of Yl in Case 1. 13
‘ [ _k/)G. 1!
E. Furthermore, the value of p( =e¢ © j) is usually small, so that Y
i‘ the nonlinear compcnent of ¥ is even less significant. ,é
) c .
?w Figures 8 and 9 illustrate the behavior of ¥, for iwo sets !
8 - 1
3 of parameters (B, y). Note thet even for large B and 7y, the i
1 H
{ nonlinearities 4o not have a significant effect. Q
P q
: It is nut computationally convenient to obtain a tebulation F
E of YE in ¢rder to tind an initisl estimate of ﬁ, since the influences g
?71 of ¥y and y are not separable. [lowever, Newton's method will g
;-i converqe rapidly from & reasonable starting polnt (for example, tl.e i
?}! estimate rrom Case 1). 3
o ;
g 7
! 3
- . N | - g
d 3.3, Quairatic ffinction plus Logapithmic Singularity i
‘ Th: specinl function to be fitted is of the form: 3
4
d

E
[~ e e
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Differentiating fQ with respect to @ gives:

Q (&‘ 6)2 !
and
2r
f'" = -A .
Q d.9°

Since the barrier function is decreasing at © = 0, this

same condition will be required of fq, go that fé(o) < 0., Hence,

-

there must exist a minimum of fQ in the interval (O, 3),.because

f.=—% ag B - 3.
Q

A stationary point of fQ will occur at ©* where

fé(e*) = 0, so that ©% gatisfiec

r

A
g + 2c8% + ar-—gj = 0.

This relation leads to a quadratic equation satisfled by ©%,

266° + (6 - 283) 6 -r-bd= 0,

-

- [ L TV ~ - -
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with two solutions which can be written in the alternstive forms:

% wﬂ%ﬁ!""{’imﬂﬁﬂww b 2t

: ) _
‘ (.5) ox . 284 = b s M- 2od)” 4 68 (v + £3)
: f ) La

or
?f‘ (3.6) o . 2ob L S+ 0D . g .
£

ke

We now oxamlne the properties of theuse two solutions in order

to determine which will qualify as & suitable minimum, i{.e., lie in

the interval (0, d8). Since fé(o) <0 and d >0, the expression
§ f3 + r 1s negative. Therefore, the s'gn of the term B85(r + 63)

Is opposite to the sign of ¢. Consider two cases:

AN e M i R, il s ki

Cuge A; c >0 (the guadpratic term in fQ a pogitive ¢ clent).

AL ~ . 1
The quantity (6 + 2¢d)” + 80 {involved tn formule (3.6) for ;
: }
% , 0* must be positive, so that two real roots exist. In formula 3
g; ? (%.5) fHr 6%, the quantity unier the square root hes magnitude less i
N
r?\' i A . A AA %
g ' than |2 &4 - GI, since 8¢(r + bd) s negative. The expression :
1R A .
%. ¢ 264 - b s positive slnce ¢ > 0O, d > 0, f < 0, end, therefore, bot . }
b 4
- ronts are positive. Fron formala (3.6) for 6%, we note that the i
quantity under the square root exceeds Iﬁ + 233] In magnitude. !
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Cage A-i; © + 288 > 0.
The value of O* corresponding to the positive square root

satisfies:

and hence is unacceptable.

The value of ©6* for the negative square root satisfies:

on ¢ S84.= ;c * = -

B

Since G + 233 is positive, and ¢ 1s positive, it follows

that d > -(€/2€), and ©* is an acceptable cholce for a minimum.

Cage A-ii; b +20d <O (f.e., |5 + 288 - -6 - 289).
Here, the root corresponding to the positive square root

satisfies:

AN A A A A
ox > iaed =D oD - .-
+ he >

Since § + 288 <0, & must be less than -(6/28); thus,

o% > 8, and is unaccep+*able.
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The solution corresponding to the negative square root

satigfies:
AA ~ r‘-M
o* < iﬂﬂi;;j%i;ihgtjﬂil.= g,

and is acceptable.

Caso B; & <O (the coeffielent of the quedretic tern ln fy s

QEEBI;VGZ.

The quantity under the square root must be positive since
¢ < O, r + Bd < 0, and thus there are two real roots. In formula
(3.5) for ©%, the quantlty under the square root exceeds 208 - b
in magnitude, and hence there must be one positive and one negative
root. Because of the sgign reversal caused by division by 3, the
positive square root corresponds to a value 6% <0, and ca. pe

eliminated from consideration. The only positive ©* can be written

as:

ox . D - 288 « /6_+26“a‘f+8r€
- u e )

The quantity under the square root has magnitude less than

|6 + 233 , so that ©* satisfies:

£~ 288 - b - 208 Y: S

Wel
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For Cases A arnd B, then, assuming that fa(o) < O, the solution
6* corresponding to the negative square root in formula { .5) or
(3.6) will be taken as the minimum of rq.

In order to specify the function rq, four independent pieces
of information are required about the behavior of the functlon to be
fitted along the search direction; fQ will therefore be used in
circumstances where s cubic fit would normally be carried out to

minimize a general function. Figure 10 {llustrates a barrier function

B T - T W

Ll i

and its approximations by the function fQ and a8 cubic, both using

the same data. The more accurate modeling of the barrier function

*

- - e e AN AN, 5 R
LR A B et ool A ittt e i skt ]

by the special function is quite noticeable.

iy

The special function fQ will be fitted with the same set of

data used by @ typical cubic line search, namely, two fumnction values

JRPEY TIT PRy

and the corresponding two gradients. As in the previous discussion,

f, denotes the function value at ei, and 8y is the corresponding

i
value of the projected gradient.
The four unkncwn parameters of fQ - 3, G, 3, and § -- must

be solved for in terms of the known values. Assuming that 62 > 01,

- e

the equations specifying fQ are:
~ A2 P
(A) fl-a+ﬁel+cel-rzn(d-el)
1
N A2 ~
(c) f, =8 +bo, + 207 - r ta(d - o))
(D) g2=3+2892+—;-3——.
(4 -8,))
2
32
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There is no loss of generality in assuming that €. = 0, so

1
that from (A) and (B) we obtain expressions for the coefficients

8 and § in terms of 4:

8 - £y +r in(d)

My r
b=€ -F-

Substituting for © in equation (D), we obtain an expression

~

for the parameter ¢ in terms of d:

e
¢ = 5, @, - g, *

These three expressions for 3, 8, and ¢ can then be substituted

into equation (C), to obtain the following:

e
(5-7) ln(3 - 62) - ln(a) + 52 %+ 1
d -6

2

2y

(2]
=%(’é'a () + &) - (£, 'fl))'

If a value d, the location of the singularity, can be
found which satisfies (3.7), the values 3, S, 3, and &% can then

be computed from the previously derived relationships.
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Consider (3.7) as a nonlinear equation in terms of the function

d -8 o
°3(d)“zn( d )+2 (d+d-9)'k5’

where

r

-

e
k, = -l-(f- (€, +85) - (£, - fl)) .

The problem to be solved then becomes that of finding a solution d
to satisfy
(5'8) 03(d) = 0.

If we introduce the variable z = 1 - 92/d = (d - 62)/d,
where O <z < 1, we can then write the eyuastion ®5(d) =0 1in

terms of the variable 2z as:

-z) =k, .

(3.9) mz) +3 ( .

8

The nonlinear equation (3.9) could be solved for a suitable
2, but the function represented is extremely ill-behaved. As 2z - 0,
the logarithm term is approaching (-w), while the reciprocal term is
simultaneously approaching (4); it is evident that (3.9) is quite

unsuitable for purposes of computation.
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However, the relationship (3.9) can be transformed into an
equivalent form that {s computationaslly reasonable. A further

change of variable is made:
v = in(2) ,

so that 2z = ev, and % = e'v; note that v will be nonpositive

gsince 0<z < 1.

When written in terms of v, the relation (3.9) becomes:

v + % eV - &) = ks

Since

sinh(v) = = (e' - ™),

(S8 (28]

the final result is:
v - sinh(v) = kj‘

t

The value 3 that satisfies this relation is a zero of the function

!B,WWN

Yﬁ(v) = k, + sinh(v) - v.

3
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Differentlating ¥, with respect to v, we obtain:

3

y!
3

it

cosh(v) = 1

Y"
3

sinh(v),
so that the function ‘1’5 has the following properties:
YB(C)) = k5 (v =0 corresponds to d - =);

Lim Y5(V) = -5
Vo -w

t

Y5>O for v <0;
t

¥5(0) = 0;

1im ¥ (v) = =;
Vep - ®

¥" <0 for v < 0.

These conditions imply that ‘1’3 has a unique zero in (= =, 0)
ir k5 > 0. This requirement means that the average of the gradients
at 91 and 92 must exceed the slope of the straight line joining
fl and f2' If the functlon to be approximated were quadratic, the
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average of the slopes at 61 and 62 rould exactly equal the slope

of the line Jjoining fl and fef The cond{tion k3 > 0 thus

S L T

i {mplies that the function to be approximated is rising more rapidly
than a quadratic.

Figure 11 illustrates the behavior of Y}.

Although the function Y3 is unbcunded below a8 Vv = = w
(L.e., when z =0, or d —»62 +), this property does not cause any
computationul difficulties In the current context. The unbounded
| behavior of Y} occurs when the estimated value of the singularity

is very close %o 92; 1f a tolerance, say €, ls specified such that

any estimate of & 1is required to satisfy & > 62/(1 - ¢), then the

variable z 13 bounded below by €, and the variasble v 1s bounded

YR IS TIYIAT awesres

below by -M, M > 0, where M = - fn(e). If values of v are

TR

regtricted to the range (-M, O), the region where Y5 is unbounded

ety ts

ig eliminated. 1If k5 is very large, 1t 1s possible that the value

Y3(-M) will not be negative for the particular value of M chosen,

and hence no zero of W3 will exist in (M, O). Under these

circumstances, we simply accept v = <M as the solution, so that

d = 6,/(1 - ).

We can easily solve the equation YB(V) = 0 with Newton's
method, considering the following properties of Y}. Since Yg <0

throughout the intervel of interest, if the starting point is chosen

so that ¥, < 0, the Newton iterétes will undershoot the solution, and

3 :
cannot diverge. Furthermore, the condition Y3(v) = 0 can be written as:

8 o e ST L1 i S i B M S 5 AN o, oot e M B il
=i W B CE S <
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k3 = v - sinh(v),
and the expression.on the right-hand side is independent of the
problem data. Hence, the function v - sinh(v) can be tabulated

for v 1in the range (-M, 0), and by table lookup using the value

k3, a highly accurate initial estimste of v, with ‘1’5 < 0, can be
obtained.
'1 The Newton procedure converges extremely rapidly except when
‘ v the value of v j.s close to zero, because ‘1’%(0) = 0. This situation
E is quite unlikely hecause the estimated singularity would then be
: much larger then 62. For completeness, however, we note that the

3
q
1
1

problem can be solved successfully even for very small v. The

function YB(V) ¢an be written:

en im0l ikt | | it

it
{3
+

‘l!3(v) 5 sinh(v) - v

b

=k3+%(ev-e'v)-v ;
1 yi v5 v2 v5 i
=k3+§(1+v+2 +E—+""(1'V+é—"§_+"'))'v -
3 5
_ i vl ...
sk ty (v Tttt ) -y
3
=k5+§-—+o(v5).
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For small v, the equation Yj(v) 0 thus essentially becomes

the condition

I~
+
ow<
il

0,

with explicit solution v¥* = (~6k3)1/5. Because we are ignoring
negative higher-order terms, this value v* will be to the left
of the correct G, and Newton's method cannot diverge. However,

the estimate v* is so accurate that no iteration at all is necessary

to obtain an acceptable solution.

4. Isplementation

The safeguarded linear searches based on quadratie or cubie
interpolation (ef. 0ill and Murrey, 19T4) have been modified for
use with the logarithmic barrier function by allowing interpolation
with the special functions described. Several rather complicated
modifications are required in order to create sn efficient aslgorithm.
If no constraint is decreasing along the current search dlrection,
or if no constraint aepproaches zero until sufficiontly far beyond
the starting point, then the singularity introduced to preserve
feaslblility will have no significent effect on the location of the
minimum, and the usyal linear search procedure should be followed.
There is no computationally reasonable way o determmine g priopri
whether these conditions exlist because the constraints and objective

function may bhe highly nonlinear, and the effort expended to ¢compare

41
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the location of the nearest constraint zero with the predietion of

the barrier function's minimum might be better used directly to

minimize the barrier function. The procedure to be described seems
to be a satisfactory compromise between excessive safeguards and

unwarranted assumptions of linearity or smoothness.

SIS Ve DA L iRl s S

L.1. Initiel Step

"he cholce of the first step slong the search direction at

El which the function 1s to be evaluated 1is affected by the possibility
that a constraint may become nonpositive if the usual choice of step
for the algorithm ls teken. For example, with a Newton-type method,
the initial step taken along the search direction is unity; for a
quasi-Newton method, there is normelly a procedure associated with

the method for choosing the initial step. Let % denote the

] ‘ initiel step that would be taken for a particular unconstrained

g algorithm if used to minimize the barrier function along the glven

AR AT, et SRR

él direction. If a comstraint might become zero at a< ah, clearly a

AT
25

shorter step than Oﬁ should be taken. One possible method for

2

determining the initial gtep is to find a highly accurate estimsate

of the step to the nearest zero of a counstraint, say &, and test

B e o

LA 2 ey
ot~ 3 g

whether Q < Oﬁ' A subroutine is available that will, with high

reliability, locate the zero of the nearest constraint by use of a

combinatlion of safeguarded zero-finding techniques. However, locating
a generally requires several constraint evaluations, and it may

turn out thet Q exceeds au or ig very cloge to Oﬁ’ gso that these

L2
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evaluations were essentially redundent. One might think of using
the zero-finding technique until the zero has been shown conclusively
o lie beyond au, but. this approach involves quite complicated house-

keeping, and, more significantly, may still require constraint calcu-~

lations that do not advence the computation.

With the "eompromige" algorithm, the initial step a(o) to be

taken along the search direction, p, is computed as follows:

1. Compute Oh, the step normally taken by the unconstrained method;
2. Compute the gradient of each constraint elong p, i.e.,

afp, where a, is the gradlent of cy: For all 1 such that
this gradient is negative, l.e., the i-th constireint is locally
decreasing along p, compute ai = -ci/agp, the predicted Newton
step to the zero of o. Mnd & = min (ai), end let I be the
index for which Q = oy. In other words, @ 1is the smallest
positive first-order step to & constraint zero. If no constraint

ia decreasing along p, set the initial step a(o) to Qh, and

skip the remalning logic.

%, FEstimate % the step to the minimum of the barrier function

along p, which satisfies:

——r a8 (x+tap)
{1 eg(x toyp) ' ) =0

M=

(h.1)  p (g(x + ap) -

where ¢(+) 1s the gradlent of F. The relationship (4.1)

TGN CRRRER I SSRGS

can be used to obtain a crude estimate of 0%, if two approxi-

matlons are made. First, we assume that only the influence
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of the constraint I is significant in the location of W)
tliils assumption is cased on the idea that for small r, only

the singularity along p oiosest to the starting point affectas

:
q
K |

the local behavior of the barrier function. Second, it is
assumed that the gradients of the objective function end I-th
constraint remain fixed locally. Under these conditions w=
ignoring second-order terms, and all but the I-th oconstraint -- 9
k (4.1) becomes: 5
b
| ;
El E
-‘ T 3
: T T arp .o 1
;. EP - T ’ :
°1 % o1F 1
4 *
1
i 1
¢ so that %
{
]
=z 2 <
%~ =TT
gP eayp ;
Since 1
-C
a- =, |
aIp

the estimate of 0% is given by:

~” T,
% QTP
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If pTg >0, {.e., p 1ie not a descent direction for the objective
functlon, then the agsumption that only one constraint will have
en effect, confined to the neighborhood of the singulerity, is

not Justified, and we set =y3, where 0 <y < 1.

4, If Q% exceeds O , let a(o) be «Q_ ; otherwise, a(o) =0
u u b

In this way, the initiel ste) can be chosen based on the
estimated decrease of tha constraints if it seems that thelr effect
will be significant in the location of the minimum of the barrier

function.

h.2.  Feasinility Check

For each step to be taken, the set of constraints is evaluated
in order to assure that feasibility is never violated. .

If any constraint, say the J-th, is non-positive at x + a(k)p,
the secant step to the predicted zero of thgt constreint is computed,
and the next estimate of the locatlon of the minimum is computed as

described above in Step (%), where the secent step &,, glven by:

- a(k) c, (x)
J cj(x + a(kYp

[¥

a ) —cd(x) ]

s used as . This proceduse is subject to the safeguarding require-
ment that the constraintg not be evaluated at points that are too
close together (see G111l and Murray, 1974; Brent, 1973, for a discus-

sion of this aspect of safeguarded linear searches).
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k.3. Nommal Iteration of Modified Lineer Search

The special functions are fitted during the iteration if a
flag hes been set to 'true'. The flag 1s set: (1) when the initial
cx(o) was @, implying that the Ilnfluence of some constraint is
predicted to be significant in locating the minimum; and (2) when
any negative constraint value is encountered during execution of the
linear search, since it has then been demonstrated that the current
iterate 1s in a region influenced by the singularities.

The specdal functiona ere fitted iteratively, using the sehe
criteria for replacing points as the usual linear searches, until the
particular convergence criteria are satisfied. There are a few
gubtle difficulties in that for small »r, it may be difficult to
locate the minimum because the dlstance from the singularity to the
minimim mey be less than the spacing required for constraint evalue-
t+ions. However, a careful regulation of the tolerances involved, so

that impossible accuracy is not sought, will assure that the process

will work ac desired.

L.b. Comparison with Usual Linear Searches

In order to determine whether the speciasl linear searches are
worthwhile, numerical experiments were carried out for several
barrier functions, with varying values of r, the barrier paremeter,
and 7, the linear search convergence parameter. For the cubic

cage where gradients are evaluated at every point, the linear search

usually terminates when
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lg(x + op)| < n|g(x)],

where g(.) 1s the projected gradient of the function to be mini-
mized; in the quadratic case, the lineasr search is usually terminated

when the minimwn of F is known to be bracketed in the interval
o, b] and

+ - -
Ll = Thvop) =S8R | < |g(x)],

l.e., when the lineurized approximation to the gradient at x + ap
saticfles the same test as g(x + op) 4in the cubic case. There

are other occasions when the normel linear gearch procedure will ter-
minate, involving sufficlent smallness of the interval of uncertainty,
¢loseness to the maximum permitted step, ete.

Numerous runs (about 40) were made. For both the special
functions end the usual polynomials, the same initial step was taken,
und the same procedure was followed for determining the next point
it a constraint became negative during the line search ‘teration.
llence, the only difference was in the use of the minime of special
functions, rather than of cubic or quadratic polynomials, to yleld
the next point at which the function and constraints are to be evalu-
aled ag the linear search proceeds. In every case, use of a special
ffunction reduced the number of function and constraint evaluations;
the reduction became progressively more significant as the value of

r was reduced. The reduction in the number of function and constraint

L7
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evaluations ranged from T% to 20% when a Newton-type algorithm was
used to carry out the unconstrained minimization, and from 12% to
244 for a quasi-Newton algorithm; thus, there was clear improvement

with the approximation by special functions.

5. Conclugions

The extra work required in the linear search procedure to fit
these speclal functions is smell. Some of the housekeepiny (checking
for feasibility, etc.) must be carried out with barrier functions

regardless of whether special functions are used or not. The formu-

3 lations pregented here allow calculation of the minimum of the fitted {%
; functions with the same iInformation required to fit the usual poly-
' nomials. The singularity must be located through an iteration, but

because of the specisl form of the iteration functions, we are able

to obtaein a highly accurate starting guess; in fact, in two of the
three cases, the solution could be obtained from tables. The itera-
tion functions are well-behaved, and Newton's method will usually
converge to the desired accuracy within two lterations. Easch itera-

tion to locate the singularity requires evaluation of a transcendental

5t i e Bl Rt sdans ol

function, but the subsequent reduction in the number of function and
constreint evaluations required to locete a satisfactory approximation

to the minimum of the barrier function seems ample justification for

bt L Y T A ol

use of the specilal linear sesrches designed to minimize barrier functions.
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